Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and Kernelization

نویسندگان

چکیده

A matching cut is a partition of the vertex set graph into two sets and B such that each has at most one neighbor in other side cut. The Matching Cut problem asks whether cut, been intensively studied literature. Motivated by question posed Komusiewicz et al. [Discrete Applied Mathematics, 2020], we introduce natural generalization this problem, which call d -Cut: for positive integer d, d-cut bipartition neighbors across We generalize (and some cases, improve) number results problem. Namely, begin with an NP-hardness reduction -Cut on $$(2d+2)$$ -regular graphs polynomial algorithm maximum degree $$d+2$$ . bound hardness result unlikely to be improved, as it would disprove long-standing conjecture context internal partitions. then give FPT algorithms several parameters: edges crossing treewidth, distance cluster, co-cluster. In particular, treewidth improves upon running time best known Cut. Our main technical contribution, building techniques [DAM, kernel every parameterized deletion input cluster graph. also rule out existence kernels when parameterizing simultaneously degree. Finally, provide exact exponential slightly faster than naive brute force approach $$\mathcal {O}^*\!\left( 2^n\right)$$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrized Complexity of Length-Bounded Cuts and Multi-cuts

We show that theMinimal Length-Bounded L-But problem can be computed in linear time with respect to L and the tree-width of the input graph as parameters. In this problem the task is to find a set of edges of a graph such that after removal of this set, the shortest path between two prescribed vertices is at least L long. We derive an FPT algorithm for a more general multi-commodity length boun...

متن کامل

the effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing

بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...

15 صفحه اول

Cuts and overspill properties in models of bounded arithmetic

In this paper we are concerned with cuts in models of Samuel Buss' theories of bounded arithmetic, i.e. theories like $S_{2}^i$ and $T_{2}^i$. In correspondence with polynomial induction, we consider a rather new notion of cut that we call p-cut. We also consider small cuts, i.e. cuts that are bounded above by a small element. We study the basic properties of p-cuts and small cuts. In particula...

متن کامل

Exact Algorithms and Complexity

Over the past couple of decades, a series of exact exponential-time algorithms have been developed with improved run times for a number of problems including IndependentSet, k-SAT, and k-colorability using a variety of algorithmic techniques such as backtracking, dynamic programming, and inclusion-exclusion. The series of improvements are typically in the form of better exponents compared to ex...

متن کامل

Paths of Bounded Length and Their Cuts: Parameterized Complexity and Algorithms

We study the parameterized complexity of two families of problems: the bounded length disjoint paths problem and the bounded length cut problem. From Menger’s theorem both problems are equivalent (and computationally easy) in the unbounded case for single source, single target paths. However, in the bounded case, they are combinatorially distinct and are both NP-hard, even to approximate. Our r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2021

ISSN: ['1432-0541', '0178-4617']

DOI: https://doi.org/10.1007/s00453-021-00798-8